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Abstract

In this paper, an analytical model for a single-plate thermoacoustic system in the presence of a magnetic field is proposed. The magnetic
field acts perpendicular to the direction of the fluid oscillation. The governing momentum and energy equations are simplified to quasi-one-
dimensional forms by approximations. Also these equations are used to derive the expressions for the fluctuating:yg)dkittuating
temperaturgTy), Nusselt numbefNu; ), and critical temperature gradief¥ T¢r) by a first order perturbation expansion. After the effects of
Hartmann numbefHay), drive ratio(DR), and temperature gradief¥ 7;,) on the flow and thermal fields are discussed, they are graphically
presented. Finally, for the present problem, a wave equation is modeled by using the continuity, momentum, and energy equations. In addition,
some possible solutions to this equation are presented.

0 2005 Elsevier SAS. All rights reserved.

Keywords:Drive ratio; Hartmann number; Magnetohydrodynamics; Richardson’s effect; Thermoacoustics; Wave equation

1. Introduction modulate the flame of a gas burner. Kirchhoff [7] calculated
the acoustic attenuation in a duct due to the oscillatory heat
A thermoacoustic interaction. the interaction between transfer between the solid isothermal duct wall and the gas

acoustic waves and temperature oscillations, is a rigid wall Sustaining the sound wave. Kirchhoff’s [7] work is now con-

acoustic boundary layer phenomenon. Usually, a low Mach sidered to be an early analysis of what is now referred to as

number compressible-viscous-oscillatory flow model [1-4] _theoreu_cal thermoacoustics. Awell established theory on the
interaction of sound waves with shear flows, far away from

governs acoustic boundary layer transport interactions. Early " s h | “the th -
mathematical treatments of a similar flow situation (an un- 119id walls, has been developed [8]; the theory’s importance

steady flow near a single-plate) date back to the works of relates to the propagation of sound in the atmosphere or the

Stokes [5]. Two classic problems: Stokes first problem, a ocean.

suddenly accelerated plane wall; and Stokes second prob—l4The eirly tt;jermoaclz.oustlc theorlgs, defv(;:oped by Rott ([jgf_
lem, flow near an oscillating flat plate, are the baseline for ], are based on a linear expansion of the governing dif-

much of the subsequent analyses. Stokes first and secon(];erentlal equaﬂops, and are usually gppllcable' to a circular
. ; . . pore geometry with a large aspect ratioléngttydiameter).
problems deal with an incompressible viscous flow only. i o . .
. : : ; . Rott’s work, originally developed to investigate the Taco-
Interest in the interaction of compressible waves with mo-

tion that can be described as the flow of an incom ressiblenis oscillation [15], was the first linear theoretical investi-
fluid be t d back to the 19th i A P h gation of heat driven oscillations. Rott’s work [1] involves

uid can be traced back 1o the century. A CUNoUS phe- .o calculation of the pressure, velocity, and temperature am-
nomenon, presented by Leconte [6] in 1858 was the observa

tion that th q duced b ical inst t’plitudes; and the condition of the acoustic oscillation onset
lon that (h€ sound waves, produced by a musicalinstrument,;, 5 vpe with both wide and narrow cross sections. He in-

vestigated a non-uniform temperature distribution [9], the
* Corresponding author. relation betweer_1 th_e temperature gradient in a tube and the
E-mail addressessmahmud@uwaterloo.ca (S. Mahmud), onset of the oscillation [10], and heat the flux along the tube
rafraser@uwaterloo.ca (R.A. Fraser). [11-13].
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Nomenclature

magnetic induction................. Wh1
c velocityof sound................... sec !
Cy skin friction coefficient (see Eqg. (17))
c, specific heat of the fluid at constant
PrESSUIE .. ...'oveeeeeennns. kg LK1
DR drive ratio,= Ps/pm
E electrical field intensity ............ Voin—1
f frequency of oscillation .................. Hz
Has Hartmann number= B8, /o /i
i complex numbers= «/—1
J currentdensity .. .................. amp 2

ks thermal conductivity of the fluid . Wn=1.K—1
Nu, complex Nusselt number (see Eq. (28))

p PrESSUIE .. .ottt 2
P4 amplitude of the fluctuating pressure. . .-.niN2
Pr Prandtl number of the fluids §2/52

Re, magnetic Reynolds numbes oo u,§

T temperature of thefluid ................... K
u axial velocity component............ .gec!
v velocity vector ..................... mec!

Greek symbols

af thermal diffusivity of the fluid . . . . .. sec?
B thermal expansion coefficient............ -k
8y viscous penetration depth; /2v/w

Sk thermal penetration depth; /20 r /w

5* displacement thickness.................... m
m dynamic viscosity of the fluid . . ... M—2.sec
o Permeability of the free space,
=4r x 1077 ... Weamp1.m~1
v kinematic viscosity . ............... fsec?!
o electrical conductivity of the fluid . .2~ 1.m~1
o) circular frequency ................. ragc L
0 density of the fluid .................. ka3
T time period,= 27 /w
A wavelength........... ...l m

Subscripts and superscripts

1 first order variable
(%) free stream value
m mean value

r reference value

rms root-mean-squared value
Symbols

Rl 1 real part of an expression

(r) time average of a complex expressibn
=71y Idt

Hg{} hypergeometric function

J_y{} Besselfunction of the first kind with order equals
-y

Y_y¢{} Bessel function of the second kind with order
equals—v

For a single-plate thermoacoustic system, Swift [2] devel-
oped an inviscid standing wave model which was modified
for a traveling wave by Raspet et al. [16]. Both Swift [2]

and Raspet et al. [16] derived expressions for the fluctuat-

As the fluid oscillates along the plate at an acoustic fre-

quency, the fluid undergoes changes in temperature. Some
of the temperature change is the result of adiabatic com-
pression and the expansion of the fluid caused by the sounds

ing temperature, and calculated the time averaged heat fluxpressure waves, and some is a consequence of the local tem-

and work flux for their problems. Santillan and Boullosa [17,
18] included the effect of viscosity in the single-plate ther-

moacoustic model, developed by Swift [2] and Raspet et al.

[16]. Swift et al. [19] discussed the possibility of using lig-

uid metals as the working fluids in thermoacoustic engines,

perature of the plate itself. The heat flow between the fluid
and plate does not produce instantaneous changes in the fluid
temperature. Instead, the heat flow between the two media is
subject to atime delay or time phasing which affects the tem-
perature, pressure, and motion. Swift [2] stated that a poor

a consideration that opens the door in thermoacoustic forthermal contact is necessary to achieve the proper phasing
possibly using a magnetic force for the energy transfer. In of the temperature oscillation of the working fluid. Magnetic

their theoretical analysis, Swift et al. [19] selected liquid
sodium due to its large thermal expansion coefficient, low
Prandtl number, high density, and high electrical conductiv-
ity. Subsequently, Wheatley et al. [20] built a demonstration
prime mover by using liquid sodium. The use of thermoa-
coustic prime movers with electrically conducting working
fluids that transforms thermal gradient into electric power
has also been proposed [21].

An important factor in the operation of thermoacoustic
engines is time phasing which is similar to the traditional

force can also be used as a fluid oscillation and as a time
phasing control mechanism in the vicinity of the plate. In
general, the action of a transverse magnetic force on a con-
ducting fluid is similar to that of a drag force [22]. Another
important application of the combination of thermoacoustics
and magnetic force is found in magnetic refrigerators [23] in
the form of the magnetocaloric effect.

Although oscillatory boundary-layer flows have been
studied in a number of MHD problems [24-27], the reported
problems of a coupled MHD (magnetohydrodynamics) and

heat engines’ piston-valve time-phase relationship. The keythermoacoustics are rare. Recent studies by Ramos et al. [28,
to phasing in thermoacoustic engines is the presence of two29] are limited to a stability analysis of thermoacoustic os-

thermodynamic media: a working fluid and a solid plate.

cillation in the presence of a magnetic filed.
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In the present study, research is conducted to model and

examine the effect of a transverse magnetic filed on the flow

and thermal fields near a single-plate thermoacoustic sys-

tem. A low Mach number compressible-viscous-oscillatory
flow situation is considered. After the simplified governing
differential equations are solved by tkemplex exponen-
tial method[30], the spatial and temporal distributions of
the fluctuating velocity, temperature, and Nusselt number are
presented.

2. Governing equations

Fig. 1(a) shows the schematic diagram of a simplified
MHD thermoacoustic device used in this paper for analy-
sis. To simplify the process, it is assumed that the acoustic
wavelength(i) is much longer than the dimensions of the
plate (long-wave approximation), and that the acoustic pres-

sure is much smaller than the mean pressure (small drive <

ratio, | p1| < pn). Itis further assumed that the viscous and
thermal penetration depth@,, §;) are much smaller than
the plate length. The general governing equations are:
continuity.

ap

L 4+V.(oV)=0
8t+ (pV)

momentum transfer
DV

Dr
heat transfer

@)

1 1
—ZVp+vV + = xB) (2)
P P

oT Dp
C,| — 4+ V.VT | =kV?T + BT ==
P ”[ o } AT,
and
electric charge transfer

v.J=0, whereJ=0(E +V x B) (4)

whereV, J, B, o, @, andE are the velocity vector, volume
current density, magnetic induction, electrical conductivity
of the fluid, viscous dissipation function, and electric field
intensity, respectively.

In a typical thermoacoustic problem, the product of the
characteristic lengths) and the permeability of the free
space(uo) is very small(« 1), ensuring a low magnetic
Reynolds numberRe, = woou,§ (assuming a magnetic
force is applied). In a low magnetic Reynolds number ap-
proximation,B influencesV (via the Lorentz force), buv
does not significantly pertu [31]. Therefore, the induced
magnetic field is negligible in comparison with the imposed
field. WhenRg, « 1, the magnetic field can be considered
to be approximately equal to the imposed field. SiBcis
now almost constant, the electric field must be irrotational
[31]; that is,

oB
VXE=——
ot

oA

0 ®)

31
Magnet
S
By | ?By Heat exchanger
‘.
7 i
. stack /T 1 esonant chamber
Driver
N
(a)

ot
o
2
3
)
=
[
=
o
O

Stack

(b)

Fig. 1. (a) A schematic diagram of the problem under consideration and
(b) analytical domain.

Ohm’s law is now simplified to

J=0(—V¢+V xB) (6)

where ¢ is the electrostatic potential. It should be noted
that the behavior of the magnetic field at a very 1&g,

is dissipative in nature, damping the mechanical motion by
converting the kinetic energy into thermal energy via Joule
dissipation [31].

3. Analysisof theflow field

It is assumed that there is a unidirectional shear flow
V= u(y)?), adjacent to the stationary plate; therefore, a no-
slip boundary condition is applicable at the plate surface. Far
away from the plate, the fluid flow is uniform and the fluid
velocity equalsu.,, depending on the time and other pa-
rameters (discussed later). The uniform imposed magnetic
field (B ~ Byj) acts parallel to the-axis as depicted in
Fig. 1(b). By using these assumptions, the divergence of the
electric field in Eq. (4) leads to the following expression:

. 3
V.J=—0V20 + oV.(Byuk) = —o V2 + aBya—M -0
: Z
(7)

which yieldsV2p = 0. It is also assumed that there is no im-
posed electric field, and so= 0. Now the magnetic source
term in Eg. (2) reduces to

2
auByiA

%(JXB):— (8)
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Any variable (for exampley, v, p, andT) can be expanded In Eq. (14),2 is the wavelength, an@®y4 is the fluctuating

[1] as follows pressure amplitude which depends on the drive ratio DR
n (= Pa/pm, pm = mean pressure). The drive ratio (DR),
D=0, + Z Pyt (9) which is a measure of the Mach numb#tg), is an impor-
=1 tant input parameter for thermoacoustic systems. IMhaas

defined as a ratio of the fluctuating velocity amplitude)
to the velocity of soundc,,) at the mean fluid temperature
(T,»), the following expression,

The term with the subscripti’ is the mean and with the sub-
script 'k’ is the fluctuating part of that variable. represents
the angular frequency which equals 2 wheref is the or-
dinary frequency. An expansion of Eq. (9) with= 1, by Ma— e _ DR (15)
using the linearized thermoacoustic theory [1,2], is sufficient Tem Yy

for describing the simple thermoacoustic phenomena. Alter-

natively, any first order variablé1(y, t) can be expressed 's arelation between tfida and the DR wherg is the spe-

cific heat ratio & C,,/C,) of the fluid. Two additional para-

aAs . _ meters; that is, the displacement thicknés9 and the skin
D1 =Dy(y, 1) = D1’ (20) friction coefficient(Cr) are calculated according to White
If Egs. (10) and (8) are substituted into Eqg. (2) and only the [32] and presented as follows:
first order terms are kept to yield 5 1—i 8y (16)
2 . 2 J1_
0 uzl_{g_i_oBy }ulzl@ (11) lHa5/2
ay v % n 0x and
The solution to Eq. (11), after the boundary conditions, ) 3/2
(8 u1(y = 0) = 0 and (bJus(y — oo) = fiite, are applied, ¢, o 1=1 pneov (1 _ l.H_a5>
yields 8y dp1/dx 2
) . o= 3/2
i op1 1—l,omka)v< .Ha5> c<x>
= “|l1-ex L IFV 12 =— 1-i— | seqd = 17)
oL+ ¥) ax[ ( + y>] (12) 8 Pa 2 X

In Eq. (12),¥ equalsHa{?/Zl whereHa; is the Hartmann Both §* andC ;s are complex, but only the real parts of them
number and, is the viscous penetration depth, respectively. have some physical meaning.

The viscous penetration depih(= +/2v/w) indicates how

far the momentum can diffuse laterally during a characteris-

tic time interval(= 2/w). This time interval is of the order ~ 4. Analysisof thethermal field

of the period of the oscillatioit = 27 /w), divided by .

An expression of the oscillating free stream velogity ) In the cases where a linear expansion is adopted to ex-
is obtained from Eq. (12) by the following: pand the thermoacoustic variables (suctuag, and T),

. ‘ 1 the viscous dissipation and Joule heating terms in the energy
. i <1+ l—Ha§) <1+ }Hag‘) ap1 (13) equation (Eq. (3)) do not play any role, since they contain

’ Pm@ 2 4 dx velocity (« andv) squared terms. By neglecting the effect

Vp1) and Has, respectively. Note that Eq. (13) is a sim- and by using a linear expansion, Eq. (3) is reduced to
pltlfltehd forr;:t (r)1f tr:je p:ramfetzrs 0;1;3|deB the squaEre brai:I2<et 82T1 (ia)) VT, iwBTy (18)
at the ri and side o usin s -\ — )= ui— p1

g d. (12). By using Egs. (12) > o T o Coar

and (13), a non-dimensional fluctuating velocity is expressed y?
asu1/ui . In such a case;/s, is a measure of the dimen-  whereg, k¢, andC, are the volumetric thermal expansion
sionless transverse distance. coefficient, thermal conductivity, and specific heat at con-

To model the pressure, a wave equation needs to be constant pressure of the fluid, respectively. The general solution
structed by using the continuity and the momentum equa- to Eq. (18) is
tions, and the thermodynamic relations. Modeling a wave .

1+i 1
equation depends on the specific type of thermoacousticT; = C; exp| —y + Coexpl ———y
problem [1,2]. For the current problem, it is assumed that
the stack is short enough that it does not perturb the standing
[ it + £21exp| —

wave appreciably (short stack approximation). Therefore,

x/l—i-llfy)—i-.Qz (19)

[ x ap1  Pa X whereC; andC; are the two constants of the integration, and
p1=Fasin and == 7 8x is the thermal penetration depth, respectively. The thermal
penetration depthy (= ,/2c ¢ /w) indicates how far the ther-

wherei = o (14) mal energy can diffuse laterally during a characteristic time

A
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interval (= 2/w). In Eq. (19),£21 and 2, are two constants 14 ¥ term denotes the influence of the magnetic field. In the

and are defined as absence of a plate (nodependence in Eq. (22)) and with a
VT,V p1 Pr zero mean temperature gradi€it7,, ~ 0), Ty in Eq. (22)
1 2o+ W) Pr—(1+ ) (20) reduces td’ag Which is, of course, desirable. The second and

third square bracketed terms in Eq. (22) pose interpretation

and difficulties due to the complicated appearances of the dif-
= VTnVpr  BTap1 1) ferent terms in them. However, the multiplieddependent
0?pn(1+¥)  puC, terms (the complex negative exponential terms Wjttand

After the following boundary conditions are applied: o) Suggest that the second square bracketed term is a tem-

(©) To(y = 0) = 0 and (d)T1(y — o) = finite, the expres- perature a_mphtude factor with a hydromagnehc mfluence,.

sion of T, after a lengthy calculation, becomes and the third square bracketed term is a temperature ampli-
tude factor with a thermal influence. For an inviscid fluid

T = [ﬁTmpl __VInVp1 ] (1 ~ 0) and in the absence of a magnetic forge = 0),
omCp  @?pm(1L+W) Eg. (22) reduces to
[ VT.Vp1 Pr BTn VT 1+
* | 020 (1+ W) Pr— (1+ llf)] = [pmc,, P — uo] [l - eXp(—Ty)] (25)
N exp<_ 1+i my> which is similar to the form that is obtained by Swift [2]
8y for an inviscid single-plate thermoacoustic system. Note that
_[BTwpr | VInVp1 1 ] Swift [2] used the standing wave features; thatisand p},
L omCp w?pm Pr—@A+¥) instead ofug and p1 in Eq. (25). It is, however, a difficult
14i task to obtain an expression for the non-dimensional fluctu-
X exp(—Ty> (22) ating temperature from Eq. (22J1.o(or Tag) can be used

. . as a scale factor and the plate temperatdig) as a refer-
wherePr is the Prandtl number of the fluid. Note that for ence value to calculate the dimensionless temperature to be
the first temperature boundary condition (boundary condi- (7y — 7))/ Ty o OF (T1 — Ty)/ Tag. AlSO y/5; is a measure
tion (c)), itis assumed that the plate has a large enough heabf the dimensionless transverse distance. Note that the ra-

capacity per unit area that its temperature does not signifi- tio of /5, to y/s, is equal to the square root of the Prandil
cantly change at the acoustic frequency [2]. Since Eq. (22) number(+/Pr).

is valid for Has # 0 andPr # 1.0, in the special case that In Eq. (24), the fluid properties, temperature gradient,
Pr =1 andHa; = 0, the expression fdf; becomes and flow properties can be written in such a way that the
BTupi  VT,Vp1 1+i both terms on the right-hand side begome equal, resulting i_n
= [ C. a2 Ml— exp(— 5 y)} T1.00 ~ 0. In such a case, the resulting temperature gradi-
Pmp @ Pm Y ent is proposed to be a critical temperature gradi®if,).
(1+DVTnVps (1) exp<— 1+: y) (23)  Again, if a short stack approximation is assumed and only
202 o 3y 3y the real part of Eq. (24) is considered, then
In the limit of a large transverse distance, the negative ex- 2 4
ponential terms in Eq. (22) vanish, yielding an expression of V7c¢r = %(1+ Hay) ,BCTcho P [1+4Ha‘3 } 'BT’éwpl (26)
the free-stream fluid temperatu(g, ), pY¥PL Pm pHo
BT, VI, Vpr 1 T Eq. (26) differs from Swift's [2] equation of critical temper-
Moo= —pg — —= = Tad— —  (24) ature gradient originally derived for an inviscid ideal gas in a
PmCp ® opp 1+ ¥ 1+ standing wave. Swift [2] obtained the following critical tem-
The complicated expression &f (Eq. (22)) requires a fur-  perature gradient equation
ther analysis in order to achieve the physical interpretations Ty Boops)
of the different terms. Each of the three square bracketedVTcr = oyt (27)

terms represents a temperature amplitude factor [33]. The
first square bracketed term is already identified in Eq. (24) for an inviscid single-plate thermoacoustic system. As a vis-
as a free-stream fluid temperatu® ). The first term of cous flow situation is considered in this paper, the definition
Eq. (24) represents a fluctuating temperat(fg) due to  0f uo (= Vp1/wpy) in Eq. (26) differs from the defini-
the adiabatic compression and expansion of the fluid [2]. tion of ] in Eq. (27). Furthermore, the additional term,
The second term of Eq. (24) is derived from the mean- (1+ Ha§')/4, in Eq. (26) is a direct consequence of the mag-
temperature gradient in the fluid; as the fluid oscillates along netic field considered in this work but not by Swift [2]. In the
the x direction with an equivalent displacement amplitude limit of a vanishing viscosity and magnetic force, Eq. (26)
uo/w (Whereug = Vpi1/wp,), the temperature, at a given reduces to Eq. (27). The origin 8T, derives from the fact
pointin space, oscillates by an amo™it,, up/w, even if the that 71 o ~ 0 in Eqg. (24). Since there is a direct influence
temperature of a given volume of fluid remain constant. The from the magnetic fieldHas) on 71, V¢ is affected by
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the change offa; as well. The motion of the fluid through a  density (p,,) which is calculated from the mean pressure
magnetic field induces an electric field that drives an electric (p,,). Most of the calculations are performed at the middle
current perpendicular to both the velocity and the magnetic of the plate which equals/16 wherex is the wavelength.
fields. The interaction of this electric current and the applied Although non-dimensional forms of the fluctuating velocity
magnetic field results in a Lorentz force [31] whose direc- (u1/u1,), temperaturéTy/ T1 ), and Nusselt number are
tion is always opposite to the velocity field in the absence of adopted in this section, the properties of Helium at 298 K
an applied electric field. The magnitude of the Lorentz force (= T,,) are used if it is necessary, but Helium has a low elec-
is higher in the free stream region [38]. The modification of trical conductivity.

the free stream velocity by the changing Lorenz force in turn

affects the free stream temperature. In general, an increasing.1. Flow field

magnetic force increases the magnitude of the critical tem-

perature gradient and vice versa. Figs. 2(a)—(c) depict the velocity profiles at various times
during one oscillation. The time is measured in Figs. 2(a)—
(c) from the point in the cycle when the particle undergoing
5. Heat transfer and the Nusselt number oscillation is at its rightmost position over the plate. Nonzero
viscosity results in a no-slip velocity between the boundary
_ In the existing thermoacoustic literature, there i§ a Very and the fluid which, in effect, produces a sheared velocity
little about the Nusselt number. For example, Guogiang and pyqfile for the tangential velocity component. This sheared
Ping [34] give an analytical expression for the complex Nus- prqfile, as exhibited in Figs. 2(a)—(c), oscillates and its am-
selt number in gcircular pore. For a more compli_cated prop— plitude, at any given distance from the plate, changes with
lem (a stack with two heat exchangers), Besnoin and Knio yime_ At a large distance from the plate, the fluid moves as
[35] numerically calculate the Nusselt number and show its it it js frictionless. One interesting feature of these velocity
variation with the heat exchangers’ length. For the current qfijes is that they show a region near the stack in which
problem, the following definition: uy is larger tharuy .. Richardson and Tyler [36] reported
similar behavior (Richardson’s annular effect) of the veloc-

Ok 0Ty

Nur = _<Tw -7 oo)g —o (28) ity profile in a pipe. The effect can be understood realizing
) ’ = that the solution of Eq. (12) is, in effect, the superposition of
is used to calculate the complex Nusselt numbetlfis a transverse wave and a uniform oscillation. The transverse
substituted into Eq. (28), wave has, at = 0, a fluid velocity that is consistently equal
N (1+i)[ m{ VT,V p1 Pr } Eri]nd 0ppots;:teﬂto_dthatI of_tth_e E{Jhnifi)rm oscillation. Fot- 0, .

= - owever, the fluid velocity in the transverse wave can excee

Tieo | /Pr |2pn@+W)Pr—(1+¥) 4

its value aty = 0 and combine with the uniform velocity to
+ { BTmp1r | VInVp1 1 ” (29) produce, at some time during a cycle, a velocity that is larger
PmCp w?pu Pr—(1+w) for some values of than the value of the uniform (free-

which is valid forPr s£ 1 andHas # 0. In the special case of ~ Stream) velocity. However, an increasiftp; reduces the

Pr =1 andHa; = 0, the expression dfiu, becomes Richardson effect on the velocity profile (see Figs. 2(a)—(c))
A+ T, 1V ¥ and at a higlHa; (for example Has = 10.0), the Richard-
Nu, = [ mP1 _ 2 Vim pl} (30) son effect is absent; that is, the maximum fluid velocity at a
Tioo L onCp 2 @?pm particular time equals o.

As previously mentioned, the fluid velocity is a superpo-
sition of u1 ~ (the uniform oscillation is independent o
anduy, (the transverse wave depends pn whereuy ,
consists ofu1 ~ times the negative exponential term. Due
to the exponential decay, the effects produced by the plate
on the velocity profile are not significant far away from the
plate. Theoreticallyy, approaches; o, wheny approaches
oo; however, the magnitude of; is almost equal ta1
within a distance that is slightly more than The following
equation:

6. Resultsand discussion

The terminology, interpretations, and simplifications of
u1, T1, andNu, have been presented in the previous sec-
tions. In this section, graphical results are given in order
to understand the influence of different parameters (for ex-
ample,Has, VT,,, and DR) onu1, Ty, andNu,. To avoid
the confusion of the sigr or —), it is assumed that the
plate is placed at the quarter wavelength< x < A/4) of
the sound wave. Also, it is assumed that W&, is pos- o _ o faiga2
itive: that is, the cold heat exchanger is placed at the be-" =M@ —u1/ur.00)/{L+ Dy 1~ i Hag}]o, (31)
ginning of the plate (near the driver side) and the hot heat gives a rough idea of how quickly; approaches ~, with
exchanger is positioned at the end of the plate. The ther-an increasing,. For example, whem = 0 andHas = O,
mophysical properties are assumed to be constant and ar@1 ~ 0.9u1 » at y = 1.155, andu1 ~ 0.99%1 o at y =
calculated at the mean temperatyf,) except the mean  2.35,.
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Fig. 3. The normalized average fluid velocity at different Hartmann num-
bers.

Since the reduction of the Richardson’s effect is one of
the consequences of an increadhay, this tendency, along
with some other effects of an increasiHgs, can be under-
stood if the non-dimensional form of the root-mean-squared
velocity is computed as follows:

wms= U2/ i2 ) @2)

Fig. 3 displaysumms as a function ofy/$, at six selected
Has. It is evident that the magnitude of the fluid velocity ex-
ceeds the free stream velocity only whidas < 1. Hence,
the Richardson effect does not exist, whda; > 1. An-
other consequence of an increasiHgs is the boundary
layer thickness reduction. In the limit of an infiniteas, the
boundary layer thickness becomes zero.

A close examination of Eq. (12) is required to understand
the DR’s effect on the velocity profile. iy andu1 , the ra-
tio of the fluctuating pressure gradididp1/9x) to the mean
fluid density(p,,) is related to the DR by the following ex-
pression:

Op1/dx _ DR(RT'"> cos(f) (33)
Om AM )

whereM andR are the molecular weight of the fluid and the
universal gas constant, respectively. Therefore, the higher
drive ratio indicates a higher magnitude of the velocity, pro-
vided that the remaining parameters are constant. As the DR
appears i1 o , the magnitude of1/u1, is unaffected by

the DR’s variation. Fig. 4 displays the variation of the root-
mean-squared skin friction coefficiefd 7,rms), as a function

of Has, at different DRs. The 7, ims — Has profiles are sim-

ilar in shape for all the DRs. Fdfas < 1, the variation in

C s rmsis independent of thidas’s variation, but foHas > 1,

the magnitude o€ ;ims increases with the increasesHias .
WhenHas > 1, Cms decreases with the increases in the
DR at a particulaHag.
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Fig. 4. The root-mean-squared skin friction coefficient at different drive
ratios.

6.2. Thermal filed

For three differenHas (= 0.0, 1.0, and 10), Figs. 5(a)—(c)
display the non-dimensional temperatgfe/ 71 ) profiles
at various times during one oscillation. The DR ang,, are
kept constant. The fluctuating temperature is zero at the wall
due the imposed boundary condition. Away from the wall,
the temperature oscillates with time in a similar fashion to
that of the velocity oscillation. Due to the vanishing negative
exponential terms with an increasingin Eq. (22),T1 ap-
proached , at a distance that is equal to a féw Similar
to Richardson'’s effect [35] on the velocity profile, Richard-
son’s effect on the temperature profile indicates a maximum
value (> T1,«) in a region adjacent the plate. A close ob-
servation of Eq. (22) reveals that the temperature profile is a
superposition of two transverse thermal waves and a uniform
oscillation. Therefore, the discussion of Richardson’s effect
on the velocity profiles is applicable for the occurrence of
the Richardson’s effect-like case of the temperature profiles.
Has appears irfy in a very complicated way. An increas-
ing Has has an insignificant influence dfy, whenVv7T,, is
comparatively lower in magnitude. THg/ Ty  profiles do
not show any significant variation with an increasidg;,
as depicted in Figs. 5(a)—(c) whén7,, = 1.0. However,
a considerable variation iffy is found whenVT,, is high
in magnitude as illustrated in Fig. 6. Here, the temperature
profiles are shown only for = 0.0. An increasingHas has
a tendency to reduce each of the temperature components in
Eqg. (22); an increasin§ 7,, has a tendency to increase each
of the temperature components in Eq. (22). With the defini-
tion of theVT¢, in Eq. (26), itis possible to expre$s/ 71,0
as

o Pr 1 14i
— =1 expl — V1+ v
T T Pr-D-wrp-1 p( 5, Vit y)
oy 149 L L
R a7 o R S

(34)
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Fig. 5. The temperature profiles at different times during one cycle for
Ha=0.0, 1.0, and 10.0.
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Fig. 6. The temperature profiles at different Hartmann numbers when
t=0.0 andVT,, =100.

wherelp equalsVTe/VT,,. The inverse offy is I'[2]. The
parameter]” — 1, is sometimes referred as a temperature
gradient factor [2]. TheVT, is a combination of certain
flow and fluid properties, and its variation is independent
of the VT,,’s variation. In the limit of smallVT,, (that is,
VT, < VTgy), It — oo, and Eq. (34) is reduced to the fol-

lowing form:

. i 1+

im [ — )=1—expl ———— 35
FoI—>OO<T1,oo) Xp( Ok y) (35)

which is independent dfias. Therefore, at a low 7, the
dimensionless temperature profiles are unaffected (or af-
fected very little) byHas's variation (see Fig. 5). In the limit

of alargevT7, (thatis,VT,, > VT¢), Iy — 0, and Eq. (34)
reduces to the following form:

. T Pr 1+
Iim|—)=1- exp| — V1+w
n!»o(n,o) Pr-1-v Xp( 5 VTt y)
14y 1+
exp| — 36
Pr-1)-v m( &y> (36)

which depends oilas. Therefore, at a highvT,,, the di-
mensionless temperature profiles are affected byHhgs
variation (see Fig. 6).

In the expressiorfy in Eq. (22), each of the three terms
on the right-hand side hasja or V p; term. Since the DR
appears indirectly in botp andV p1, T1/ T1.  is free from
DR’s influence. Next, the focus is on the influencé/df,, on
the thermal field. In order to remove the time dependence of
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Fig. 7. The normalized average temperature at different Hartmann numbers.
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Fig. 8. The Nusselt number distribution as a function of time in one time
period.

temperature distribution. For the setting of the parameters in
Fig. 7, VI, ~ 50.8732. WhenVT,, < VT, the near wall
gradient of Tyms increases with increasing7,,. This trend

is reversed wheW 7T, > VTg.

6.3. Heat transfer

Both Eqgs. (29) and (30) are complex and time dependent.

the temperature, the root-mean-squared temperature is calThe appearance gi; and Vp1 in Egs. (29) and (30) ren-

culated to become dimensionless as follows:
Trms = \(T?)/(T{ )

Fig. 7 denotes the variation dins as a function ofy/§;
at the different values oV 7T,,. Trms is O at the wall as ex-
pected, regardless &T,,’s variation.T;yms approaches to its
free stream valué= 1) as expected far away from the wall.
As pointed our earliery T, plays an important role for the

37)

dersNu, independent of DR’s variation. For a constéts;
and DR, Fig. 8 displays the time variation Wi, at differ-
entVT,'s. One complete periot = 0 — 1) is selected to
show Nu;’s variation. Nu, exhibits a true periodic distrib-
ution with time with a zero time averagéNu,) = 0) over

a complete periodv T, plays a critical role foNu,’s dis-
tribution. For the setting of the parameters in Fig. M,
(VT ~ 50.8732 is computed from Eq. (26). Except at
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% + <¥\/1+—‘1f>2p1 — pmPP L+ )T =0
(41)
which is reduced to the following by using Eq. (24):
i%) o
Tw 0x ) 0x

2 2 2
+ 1+ m[(”f?) _Infe ]p1=0 (42)

3%p1
—_— 1+y
(L )(

Cp
T By using the speed of sound and heat capacity thermody-
N namic relations¢? = yRT,, and C, = yR/(y — 1), the
0 — L L terms inside the square bracket of Eq. (42) are simplified
10 25 50 75 100 2 .
VT to becomdw/c)“. Finally, the wave equation for the current
" problem becomes
Fig. 9. The root-mean-squared Nusselt number as a function of the temper- 5 3IN(T,) ? 2
ature gradient. _P21+(1+q/) m) 0pP1 + @ 179) p1=0
ax ax dax c
t = 0.125r and 0625r, Nu, shows the opposite sign above (43)

and below thévT; that is, at a particular timé\u; is pos- In Eq. (43),T,, depends on and the sound spead) de-

ltive v_vhenVTm > VTer, and negative whev T, < VTer, pends implicitly onx through its dependence dh,. For

and vice versa. Next, the rootjmean—squared Nusseltlnumbelgi given T, (x), the numerical determination gé1, from
(Numg) is calculated as the time averageMi;, resulting g4 (43), presents no problem. However, great care should be
in zero, in order to show its variation witha; and VT, taken to achieve an analytical solution to Eq. (43). Only very
Fig. 9 depicts the variation diums as a function ofV 7, special distributions of}, (x) are appropriate for the ana-

at differentHa,. Theoretically, VT, = VT is @ singular —yic yreatment of Eq. (43); for example, a piecewise constant
point for Nu,'s variation. The magnitude dfiums is high 1o perature distribution [1] and a linear temperature distrib-
at a value ofvT,, close toVTcy, as obserV(_ad n Fig. 9. For  iion [16]. The first possible general solution to Eg. (43) can
the selected range oF 7, VTcr is more significant when g gptained by assuming that the coefficients;af/ax and

Ha; < 1. WhenHa; > 1, Nums shows a minimal or no . iy Eq. (43) are constants. Then, the general solution to
variation withVT,,’s variation, and its value approximately Eq. (43) is

equals 1. . .
p1=Ar1exp(p1x) + Az explgzx) (44)

where the constanté,; andA,, are real or complex expres-

7. Wave equation sions, andp; andy; are expressed as and

Till this point, Eq. (14) has been used to exprpsover _}(1+ W) 9In 7,
the plate. Eqg. (14) works well in the limit of a short-stack ap- 2 dx

proximation. However, in more general cases, it is necessary 3InT. 12 20 2
to model and solve a wave equation in order to calculate the - = {(1+ ') 3 n } — (— 1+ !I/) (45a)
pressure fluctuation. The linearized first order continuity and . ¢
inviscid momentum equations are and
. 9(omu1) 1 1 alnT,
\mEl R 1
iwp1 + P 0 (38) @2 2( +¥) ox
and 1 aInT, |2 (2 2
ap +§\/{(1+l1/) ] ”’} —(—‘” 1+w) (45b)
(iCOp;n +UB5)M1:_8_):- (39) * ¢

_ o . o At the starting point of the platéx = x;), it is appropriate
By differentiating Eq. (39), with respect 10 and combining  to apply the standing wave pressysix,). However, it is

it with Eq. (38), extremely difficult to apply correct boundary condition at the
1 32p1 plate exit(x = x.). None of thg thermogcogstic. literature

p1= T2+ 9) 012 (40) covers such a boundary condition. In this situation, a more
logical way is to apply the exit boundary condition that is

With the thermodynamic relatiop; = —,om,BT1+(y/CZ)p1, similar to that of the fluctuating feature of a standing wave;

p1 can be eliminated from Eq. (40) to yield that is, pj (x.). Then, the expression g becomes
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= p1(xs)e??'e — pj(xp)e??'s
eP1Xs pP2Xe — pP1Xe pP2Xs

} explg1x)

p1(xs)e?r e — pj(xe)e?ts
N eP1Xs pP2Xe — pP1Xe pP2Xs

(46)

] explg2x)

where pi(x) = Pssin(x/d), pi(x,) = Pasin(x,/i),
pi(xe) = P4 sin(x./A).

The applicability of Eq. (46) is restricted by the relations
given in Eq. (45). To obtain a real result from Eq. (46), the
following condition must be satisfied:

alnT,, VT, _ 2w

=—"2>=

0x T c

which, after further mathematical operations and simplifica-
tions, becomes

T, 2T,
VT, >4 — =—"
A A
Next, a linear variation of temperatufg, (x) is assumed as

follows:

(47)

(48)

T, — T,
T.L
In Eq. (49),T,, andT, are the hot and the cold heat exchang-

ers temperature, respectively, ahdbs the length of the plate.

If it is further assumed that the variation ofis negligible
with T;,,’s variation, the general solution to Eq. (43) is

p1=Arexpikov/I+ ¥ x)(1+ mx)~TH/2

1+y 1-v
15 55

Tp(x) = T.(1+mx), wherem = (49)

m
" 2iko/I+ ¥ (1+ mx) }

5 1+w
+ Agexp(ikov/1+ lPx)Hg{ [%] [1+ ],

| 2ikoV/IF ¥ (14 mx) }

(50)
m

wherekg equalsw/c. In Eq. (50),Hg{} is the generalized

hypergeometric function [37]. I varies with the tempera-

ture; thatisc = \/y RT,,(x), the coefficient ofpq is written

as

()

c

2 K1+ w)

51
1+ mx (51)

w
,  wherek; = —
o

In Eq. (51),co is the velocity of sound &f.. Now, the general
solution to Eq. (43) becomes

p1= [AlJ—w{zkl W}

m2

N AzY_w{Zkl\/(l+mx)2(1+ ) H
m

—w/2

x (1+ mx) (52)

whereJ_y{} is the Bessel function of the first kind [37]
with the order—¥, andY _y { } is the Bessel function of the
second kind [37] with the order .
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8. Conclusions

The objective of the current research effort is to incor-
porate into the existing thermoacoustic theory a modifica-
tion that uses a magnetic force as a non-contact controlling
mechanism of the thermoacoustic effect. In the limit of a
large transverse distan¢g — oco), the fluctuating velocity
and temperature approachey-aindependent free stream
velocity and temperature, respectively. In reality, this large
transverse distance is limited to a féyor §;. An increasing
Hartmann number (that is, the increasing magnetic force) re-
duces the boundary layer thickness; in the limit of very large
Hartmann numbetHas — oo), the boundary layer thick-
ness becomes zero. The Richardson’s effect (veloqitis
larger thanu1 o in a region near the stack) is observed in
the velocity profile only whedas < 1. The variation of the
non-dimensional axial velocity is independent of the drive
ratio’s variation. The fluctuating temperature profile shows
a maximum(> Ty ) in a region near the plate, similar
to that of the velocity profile (the Richardson’s effect-like
scenario). The critical temperature gradient causes a zero
free stream temperature for an appropriate combination of
the fluid and flow properties. Whew T, is small, an in-
creasing Hartmann number show a very little effect on the
dimensionless temperature. However, a considerable vari-
ation of temperature is observed with Hartmann number’s
variation, when the mean axial temperature gradient is large.
The Nusselt number indicates a periodic distribution with
time, and its sign depends on the critical temperature gra-
dient. For the selected range of the mean axial temperature
gradients, the variation in the Nusselt number is insignifi-
cant withVT,,’s variation; wherHas < 1. A wave equation
is developed from the simplified continuity, momentum, and
energy equations. Lastly, three possible solutions to the wave
equation are presented.
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