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Abstract

In this paper, an analytical model for a single-plate thermoacoustic system in the presence of a magnetic field is proposed. Th
field acts perpendicular to the direction of the fluid oscillation. The governing momentum and energy equations are simplified to q
dimensional forms by approximations. Also these equations are used to derive the expressions for the fluctuating velocity(u1), fluctuating
temperature(T1), Nusselt number(Nuτ ), and critical temperature gradient(∇Tcr) by a first order perturbation expansion. After the effects
Hartmann number(Haδ), drive ratio(DR), and temperature gradient(∇Tm) on the flow and thermal fields are discussed, they are graphi
presented. Finally, for the present problem, a wave equation is modeled by using the continuity, momentum, and energy equations.
some possible solutions to this equation are presented.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

A thermoacoustic interaction, the interaction betwe
acoustic waves and temperature oscillations, is a rigid
acoustic boundary layer phenomenon. Usually, a low M
number compressible-viscous-oscillatory flow model [1
governs acoustic boundary layer transport interactions. E
mathematical treatments of a similar flow situation (an
steady flow near a single-plate) date back to the work
Stokes [5]. Two classic problems: Stokes first problem
suddenly accelerated plane wall; and Stokes second p
lem, flow near an oscillating flat plate, are the baseline
much of the subsequent analyses. Stokes first and se
problems deal with an incompressible viscous flow only.

Interest in the interaction of compressible waves with m
tion that can be described as the flow of an incompress
fluid can be traced back to the 19th century. A curious p
nomenon, presented by Leconte [6] in 1858 was the obse
tion that the sound waves, produced by a musical instrum
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modulate the flame of a gas burner. Kirchhoff [7] calcula
the acoustic attenuation in a duct due to the oscillatory
transfer between the solid isothermal duct wall and the
sustaining the sound wave. Kirchhoff’s [7] work is now co
sidered to be an early analysis of what is now referred t
theoretical thermoacoustics. A well established theory on
interaction of sound waves with shear flows, far away fr
rigid walls, has been developed [8]; the theory’s importa
relates to the propagation of sound in the atmosphere o
ocean.

The early thermoacoustic theories, developed by Rott
14], are based on a linear expansion of the governing
ferential equations, and are usually applicable to a circ
pore geometry with a large aspect ratio (= length/diameter).
Rott’s work, originally developed to investigate the Tac
nis oscillation [15], was the first linear theoretical inves
gation of heat driven oscillations. Rott’s work [1] involve
the calculation of the pressure, velocity, and temperature
plitudes; and the condition of the acoustic oscillation on
in a tube with both wide and narrow cross sections. He
vestigated a non-uniform temperature distribution [9],
relation between the temperature gradient in a tube and
onset of the oscillation [10], and heat the flux along the t
[11–13].
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Nomenclature

B magnetic induction . . . . . . . . . . . . . . . . . Wb·m−1

c velocity of sound . . . . . . . . . . . . . . . . . . . m·sec−1

Cf skin friction coefficient (see Eq. (17))
Cp specific heat of the fluid at constant

pressure . . . . . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

DR drive ratio,= PA/pm

E electrical field intensity . . . . . . . . . . . . Volt·m−1

f frequency of oscillation . . . . . . . . . . . . . . . . . . Hz
Haδ Hartmann number,= Byδν

√
σ/µ

i complex number,= √−1
J current density . . . . . . . . . . . . . . . . . . . . amp·m−2

kf thermal conductivity of the fluid . W·m−1·K−1

Nuτ complex Nusselt number (see Eq. (28))
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . N·m−2

PA amplitude of the fluctuating pressure. . . N·m−2

Pr Prandtl number of the fluid,= δ2
ν/δ

2
k

Rem magnetic Reynolds number,= µ0σurδ

T temperature of the fluid . . . . . . . . . . . . . . . . . . . K
u axial velocity component . . . . . . . . . . . . m·sec−1

V velocity vector . . . . . . . . . . . . . . . . . . . . . m·sec−1

Greek symbols

αf thermal diffusivity of the fluid . . . . . . m2·sec−1

β thermal expansion coefficient . . . . . . . . . . . . K−1

δν viscous penetration depth,= √
2ν/ω

δk thermal penetration depth,= √
2αf /ω

δ∗ displacement thickness. . . . . . . . . . . . . . . . . . . . m
µ dynamic viscosity of the fluid . . . . . N·m−2·sec
µ0 Permeability of the free space,

= 4π × 10−7 . . . . . . . . . . . . . . . Wb·amp−1·m−1

ν kinematic viscosity . . . . . . . . . . . . . . . . m2·sec−1

σ electrical conductivity of the fluid . .Ω−1·m−1

ω circular frequency . . . . . . . . . . . . . . . . . rad·sec−1

ρ density of the fluid . . . . . . . . . . . . . . . . . . kg·m−3

τ time period,= 2π/ω

λ wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Subscripts and superscripts

1 first order variable
∞ free stream value
m mean value
r reference value
rms root-mean-squared value

Symbols

�[ ] real part of an expression
〈Γ 〉 time average of a complex expressionΓ ,

= τ−1
∫ τ

0 Γ dt

Hg{ } hypergeometric function
J−Ψ { } Bessel function of the first kind with order equals

−Ψ

Y−Ψ { } Bessel function of the second kind with order
equals−Ψ
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For a single-plate thermoacoustic system, Swift [2] de
oped an inviscid standing wave model which was modi
for a traveling wave by Raspet et al. [16]. Both Swift [
and Raspet et al. [16] derived expressions for the fluct
ing temperature, and calculated the time averaged hea
and work flux for their problems. Santillan and Boullosa [1
18] included the effect of viscosity in the single-plate th
moacoustic model, developed by Swift [2] and Raspet e
[16]. Swift et al. [19] discussed the possibility of using li
uid metals as the working fluids in thermoacoustic engin
a consideration that opens the door in thermoacoustic
possibly using a magnetic force for the energy transfer
their theoretical analysis, Swift et al. [19] selected liqu
sodium due to its large thermal expansion coefficient,
Prandtl number, high density, and high electrical conduc
ity. Subsequently, Wheatley et al. [20] built a demonstra
prime mover by using liquid sodium. The use of therm
coustic prime movers with electrically conducting worki
fluids that transforms thermal gradient into electric pow
has also been proposed [21].

An important factor in the operation of thermoacous
engines is time phasing which is similar to the traditio
heat engines’ piston-valve time-phase relationship. The
to phasing in thermoacoustic engines is the presence o
thermodynamic media: a working fluid and a solid pla
As the fluid oscillates along the plate at an acoustic
quency, the fluid undergoes changes in temperature. S
of the temperature change is the result of adiabatic c
pression and the expansion of the fluid caused by the so
pressure waves, and some is a consequence of the loca
perature of the plate itself. The heat flow between the fl
and plate does not produce instantaneous changes in the
temperature. Instead, the heat flow between the two med
subject to a time delay or time phasing which affects the t
perature, pressure, and motion. Swift [2] stated that a p
thermal contact is necessary to achieve the proper pha
of the temperature oscillation of the working fluid. Magne
force can also be used as a fluid oscillation and as a
phasing control mechanism in the vicinity of the plate.
general, the action of a transverse magnetic force on a
ducting fluid is similar to that of a drag force [22]. Anoth
important application of the combination of thermoacous
and magnetic force is found in magnetic refrigerators [23
the form of the magnetocaloric effect.

Although oscillatory boundary-layer flows have be
studied in a number of MHD problems [24–27], the repor
problems of a coupled MHD (magnetohydrodynamics)
thermoacoustics are rare. Recent studies by Ramos et a
29] are limited to a stability analysis of thermoacoustic
cillation in the presence of a magnetic filed.
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In the present study, research is conducted to model
examine the effect of a transverse magnetic filed on the
and thermal fields near a single-plate thermoacoustic
tem. A low Mach number compressible-viscous-oscillat
flow situation is considered. After the simplified governi
differential equations are solved by thecomplex exponen
tial method[30], the spatial and temporal distributions
the fluctuating velocity, temperature, and Nusselt numbe
presented.

2. Governing equations

Fig. 1(a) shows the schematic diagram of a simplifi
MHD thermoacoustic device used in this paper for ana
sis. To simplify the process, it is assumed that the acou
wavelength(λ) is much longer than the dimensions of t
plate (long-wave approximation), and that the acoustic p
sure is much smaller than the mean pressure (small d
ratio, |p1| � pm). It is further assumed that the viscous a
thermal penetration depths(δν, δk) are much smaller tha
the plate length. The general governing equations are:
continuity:

∂ρ

∂t
+ ∇.(ρV) = 0 (1)

momentum transfer:

DV
Dt

= − 1

ρ
∇p + ν∇2V + 1

ρ
(J × B) (2)

heat transfer:

ρCp

[
∂T

∂t
+ V.∇T

]
= k∇2T + βT

Dp

Dt
+ |J|2

σ
+ µΦ (3)

and
electric charge transfer:

∇.J = 0, whereJ = σ(E + V × B) (4)

whereV, J, B, σ , Φ, andE are the velocity vector, volum
current density, magnetic induction, electrical conductiv
of the fluid, viscous dissipation function, and electric fie
intensity, respectively.

In a typical thermoacoustic problem, the product of
characteristic length(δ) and the permeability of the fre
space(µ0) is very small(� 1), ensuring a low magneti
Reynolds number,Rem = µ0σurδ (assuming a magneti
force is applied). In a low magnetic Reynolds number
proximation,B influencesV (via the Lorentz force), butV
does not significantly perturbB [31]. Therefore, the induce
magnetic field is negligible in comparison with the impos
field. WhenRem � 1, the magnetic field can be consider
to be approximately equal to the imposed field. SinceB is
now almost constant, the electric field must be irrotatio
[31]; that is,

∇ × E = −∂B ≈ 0 (5)

∂t
(a)

(b)

Fig. 1. (a) A schematic diagram of the problem under consideration
(b) analytical domain.

Ohm’s law is now simplified to

J = σ(−∇ϕ + V × B) (6)

where ϕ is the electrostatic potential. It should be not
that the behavior of the magnetic field at a very lowRem
is dissipative in nature, damping the mechanical motion
converting the kinetic energy into thermal energy via Jo
dissipation [31].

3. Analysis of the flow field

It is assumed that there is a unidirectional shear fl
(V ≈ u(y)î), adjacent to the stationary plate; therefore, a
slip boundary condition is applicable at the plate surface.
away from the plate, the fluid flow is uniform and the flu
velocity equalsu∞, depending on the time and other p
rameters (discussed later). The uniform imposed magn
field (B ≈ By ĵ) acts parallel to they-axis as depicted in
Fig. 1(b). By using these assumptions, the divergence o
electric field in Eq. (4) leads to the following expression:

∇.J = −σ∇2ϕ + σ∇.(Byuk̂) = −σ∇2ϕ + σBy

∂u

∂z
= 0

(7)

which yields∇2ϕ = 0. It is also assumed that there is no i
posed electric field, and soϕ = 0. Now the magnetic sourc
term in Eq. (2) reduces to

1
(J × B) = −σuB2

y î (8)

ρ ρ
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Any variable (for example,u, v, p, andT ) can be expande
[1] as follows

Φ = Φm +
n∑

k=1

Φke
ikωt (9)

The term with the subscript ‘m’ is the mean and with the sub
script ‘k’ is the fluctuating part of that variable.ω represents
the angular frequency which equals 2πf , wheref is the or-
dinary frequency. An expansion of Eq. (9) withk = 1, by
using the linearized thermoacoustic theory [1,2], is suffic
for describing the simple thermoacoustic phenomena. A
natively, any first order variablêΦ1(y, t) can be expresse
as

Φ̂1 = Φ̂1(y, t) = Φ1e
iωt (10)

If Eqs. (10) and (8) are substituted into Eq. (2) and only
first order terms are kept to yield

∂2u1

∂y2
−

{
iω

ν
+ σBy

µ

}
u1 = 1

µ

∂p1

∂x
(11)

The solution to Eq. (11), after the boundary conditio
(a) u1(y = 0) = 0 and (b)u1(y → ∞) = finite, are applied
yields

u1 = i

ρmω(1+ Ψ )

∂p1

∂x

[
1− exp

(
−1+ i

δν

√
1+ Ψ y

)]
(12)

In Eq. (12),Ψ equalsHa2
δ/2i whereHaδ is the Hartmann

number andδν is the viscous penetration depth, respectiv
The viscous penetration depthδν(= √

2ν/ω) indicates how
far the momentum can diffuse laterally during a characte
tic time interval(= 2/ω). This time interval is of the orde
of the period of the oscillation(τ = 2π/ω), divided byπ .
An expression of the oscillating free stream velocity(u1,∞)

is obtained from Eq. (12) by the following:

u1,∞ = i

ρmω

(
1+ i

2
Ha2

δ

)(
1+ 1

4
Ha4

δ

)−1
∂p1

∂x
(13)

in terms of the fluctuating pressure gradient(∂p1/∂x or
∇p1) and Haδ , respectively. Note that Eq. (13) is a sim
plified form of the parameters outside the square bra
at the right-hand side of Eq. (12). By using Eqs. (1
and (13), a non-dimensional fluctuating velocity is expres
asu1/u1,∞. In such a case,y/δν is a measure of the dimen
sionless transverse distance.

To model the pressure, a wave equation needs to be
structed by using the continuity and the momentum eq
tions, and the thermodynamic relations. Modeling a w
equation depends on the specific type of thermoacou
problem [1,2]. For the current problem, it is assumed t
the stack is short enough that it does not perturb the stan
wave appreciably (short stack approximation). Therefore

p1 = PA sin

(
x

λ̃

)
and

∂p1

∂x
= PA

λ̃
cos

(
x

λ̃

)

whereλ̃ = λ
(14)
2π
-

In Eq. (14),λ is the wavelength, andPA is the fluctuating
pressure amplitude which depends on the drive ratio
(= PA/pm, pm = mean pressure). The drive ratio (DR
which is a measure of the Mach number (Ma), is an impor-
tant input parameter for thermoacoustic systems. If theMa is
defined as a ratio of the fluctuating velocity amplitude(ua)

to the velocity of sound(cm) at the mean fluid temperatu
(Tm), the following expression,

Ma= ua

cm

= DR

γ
(15)

is a relation between theMa and the DR whereγ is the spe-
cific heat ratio (= Cp/Cv) of the fluid. Two additional para
meters; that is, the displacement thickness(δ∗) and the skin
friction coefficient(Cf ) are calculated according to Whi
[32] and presented as follows:

δ∗ = 1− i

2

δν√
1− i Ha2

δ/2
(16)

and

Cf = 1− i

δν

ρmων

∂p1/∂x

(
1− i

Haδ

2

)3/2

= 1− i

δν

ρmλ̃ων

PA

(
1− i

Haδ

2

)3/2

sec

(
x

λ̃

)
(17)

Both δ∗ andCf are complex, but only the real parts of the
have some physical meaning.

4. Analysis of the thermal field

In the cases where a linear expansion is adopted to
pand the thermoacoustic variables (such asu, p, and T ),
the viscous dissipation and Joule heating terms in the en
equation (Eq. (3)) do not play any role, since they con
velocity (u andv) squared terms. By neglecting the effe
of Joule heating and viscous dissipation on the heat tran
and by using a linear expansion, Eq. (3) is reduced to

∂2T1

∂y2
−

(
iω

αf

)
T1 = ∇Tm

αf

u1 − iωβTm

ρmCpαf

p1 (18)

whereβ, kf , andCp are the volumetric thermal expansio
coefficient, thermal conductivity, and specific heat at c
stant pressure of the fluid, respectively. The general solu
to Eq. (18) is

T1 = C1 exp

(
1+ i

δk

y

)
+ C2 exp

(
−1+ i

δk

y

)

+ Ω1 exp

(
−1+ i

δν

√
1+ Ψ y

)
+ Ω2 (19)

whereC1 andC2 are the two constants of the integration, a
δk is the thermal penetration depth, respectively. The ther
penetration depthδk (= √

2αf /ω) indicates how far the ther
mal energy can diffuse laterally during a characteristic t
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t
ce
interval (= 2/ω). In Eq. (19),Ω1 andΩ2 are two constant
and are defined as

Ω1 = ∇Tm∇p1

ω2ρm(1+ Ψ )

Pr

Pr − (1+ Ψ )
(20)

and

Ω2 = ∇Tm∇p1

ω2ρm(1+ Ψ )
− βTmp1

ρmCp

(21)

After the following boundary conditions are applie
(c) T1(y = 0) = 0 and (d)T1(y → ∞) = finite, the expres-
sion ofT1, after a lengthy calculation, becomes

T1 =
[
βTmp1

ρmCp

− ∇Tm∇p1

ω2ρm(1+ Ψ )

]

+
[ ∇Tm∇p1

ω2ρm(1+ Ψ )

Pr

Pr − (1+ Ψ )

]

× exp

(
−1+ i

δν

√
1+ Ψ y

)

−
[
βTmp1

ρmCp

+ ∇Tm∇p1

ω2ρm

1

Pr − (1+ Ψ )

]

× exp

(
−1+ i

δk

y

)
(22)

wherePr is the Prandtl number of the fluid. Note that f
the first temperature boundary condition (boundary co
tion (c)), it is assumed that the plate has a large enough
capacity per unit area that its temperature does not sig
cantly change at the acoustic frequency [2]. Since Eq.
is valid for Haδ �= 0 andPr �= 1.0, in the special case tha
Pr = 1 andHaδ = 0, the expression forT1 becomes

T1 =
[
βTmp1

ρmCp

− ∇Tm∇p1

ω2ρm

][
1− exp

(
−1+ i

δν

y

)]

+ (1+ i)∇Tm∇p1

2ω2ρm

(
y

δν

)
exp

(
−1+ i

δν

y

)
(23)

In the limit of a large transverse distance, the negative
ponential terms in Eq. (22) vanish, yielding an expressio
the free-stream fluid temperature(T1,∞),

T1,∞ = βTm

ρmCp

p1 − ∇Tm

ω

∇p1

ωρm

1

1+ Ψ
= Tad− Tsw

1+ Ψ
(24)

The complicated expression ofT1 (Eq. (22)) requires a fur
ther analysis in order to achieve the physical interpretat
of the different terms. Each of the three square brack
terms represents a temperature amplitude factor [33].
first square bracketed term is already identified in Eq. (
as a free-stream fluid temperature(T1,∞). The first term of
Eq. (24) represents a fluctuating temperature(Tad) due to
the adiabatic compression and expansion of the fluid
The second term of Eq. (24) is derived from the me
temperature gradient in the fluid; as the fluid oscillates al
the x direction with an equivalent displacement amplitu
u0/ω (whereu0 = ∇p1/ωρm), the temperature, at a give
point in space, oscillates by an amount∇Tmu0/ω, even if the
temperature of a given volume of fluid remain constant. T
t

1+Ψ term denotes the influence of the magnetic field. In
absence of a plate (noy dependence in Eq. (22)) and with
zero mean temperature gradient(∇Tm ≈ 0), T1 in Eq. (22)
reduces toTad which is, of course, desirable. The second a
third square bracketed terms in Eq. (22) pose interpreta
difficulties due to the complicated appearances of the
ferent terms in them. However, the multipliedy-dependen
terms (the complex negative exponential terms withδν and
δk) suggest that the second square bracketed term is a
perature amplitude factor with a hydromagnetic influen
and the third square bracketed term is a temperature am
tude factor with a thermal influence. For an inviscid flu
(µ ≈ 0) and in the absence of a magnetic force(Ψ = 0),
Eq. (22) reduces to

T1 =
[

βTm

ρmCp

p1 − ∇Tm

ω
u0

][
1− exp

(
−1+ i

δk

y

)]
(25)

which is similar to the form that is obtained by Swift [
for an inviscid single-plate thermoacoustic system. Note
Swift [2] used the standing wave features; that is,us

1 andps
1,

instead ofu0 andp1 in Eq. (25). It is, however, a difficul
task to obtain an expression for the non-dimensional flu
ating temperature from Eq. (22).T1,∞(or Tad) can be used
as a scale factor and the plate temperature(Tw) as a refer-
ence value to calculate the dimensionless temperature
(T1 − Tw)/T1,∞ or (T1 − Tw)/Tad. Also y/δk is a measure
of the dimensionless transverse distance. Note that th
tio of y/δk to y/δν is equal to the square root of the Pran
number(

√
Pr ).

In Eq. (24), the fluid properties, temperature gradie
and flow properties can be written in such a way that
both terms on the right-hand side become equal, resultin
T1,∞ ≈ 0. In such a case, the resulting temperature gr
ent is proposed to be a critical temperature gradient(∇Tcr).
Again, if a short stack approximation is assumed and o
the real part of Eq. (24) is considered, then

∇Tcr = 1

4

(
1+ Ha4

δ

)βTmω2p1

Cp∇p1
=

[
1+ Ha4

δ

4

]
βTmωp1

ρmCpu0
(26)

Eq. (26) differs from Swift’s [2] equation of critical tempe
ature gradient originally derived for an inviscid ideal gas i
standing wave. Swift [2] obtained the following critical tem
perature gradient equation

∇Tcr = Tmβωps
1

ρmCpus
1

(27)

for an inviscid single-plate thermoacoustic system. As a
cous flow situation is considered in this paper, the defini
of u0 (= ∇p1/ωρm) in Eq. (26) differs from the defini
tion of us

1 in Eq. (27). Furthermore, the additional ter
(1+ Ha4

δ)/4, in Eq. (26) is a direct consequence of the m
netic field considered in this work but not by Swift [2]. In th
limit of a vanishing viscosity and magnetic force, Eq. (2
reduces to Eq. (27). The origin of∇Tcr derives from the fac
that T1,∞ ≈ 0 in Eq. (24). Since there is a direct influen
from the magnetic field(Haδ) on T1,∞, ∇Tcr is affected by
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(c))
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the change ofHaδ as well. The motion of the fluid through
magnetic field induces an electric field that drives an elec
current perpendicular to both the velocity and the magn
fields. The interaction of this electric current and the app
magnetic field results in a Lorentz force [31] whose dir
tion is always opposite to the velocity field in the absenc
an applied electric field. The magnitude of the Lorentz fo
is higher in the free stream region [38]. The modification
the free stream velocity by the changing Lorenz force in t
affects the free stream temperature. In general, an increa
magnetic force increases the magnitude of the critical t
perature gradient and vice versa.

5. Heat transfer and the Nusselt number

In the existing thermoacoustic literature, there is a v
little about the Nusselt number. For example, Guoqiang
Ping [34] give an analytical expression for the complex N
selt number in a circular pore. For a more complicated p
lem (a stack with two heat exchangers), Besnoin and K
[35] numerically calculate the Nusselt number and show
variation with the heat exchangers’ length. For the cur
problem, the following definition:

Nuτ = −
(

δk

Tw − T1,∞

)
∂T1

∂y

∣∣∣∣
y=0

(28)

is used to calculate the complex Nusselt number. IfT1 is
substituted into Eq. (28),

Nuτ = (1+ i)

T1,∞

[
−

√
1+ Ψ√

Pr

{ ∇Tm∇p1

ω2ρm(1+ Ψ )

Pr

Pr − (1+ Ψ )

}

+
{

βTmp1

ρmCp

+ ∇Tm∇p1

ω2ρm

1

Pr − (1+ Ψ )

}]
(29)

which is valid forPr �= 1 andHaδ �= 0. In the special case o
Pr = 1 andHaδ = 0, the expression ofNuτ becomes

Nuτ = (1+ i)

T1,∞

[
βTmp1

ρmCp

− 1

2

∇Tm∇p1

ω2ρm

]
(30)

6. Results and discussion

The terminology, interpretations, and simplifications
u1, T1, andNuτ have been presented in the previous s
tions. In this section, graphical results are given in or
to understand the influence of different parameters (for
ample,Haδ,∇Tm, and DR) onu1, T1, andNuτ . To avoid
the confusion of the sign (+ or −), it is assumed that th
plate is placed at the quarter wavelength(0 � x � λ/4) of
the sound wave. Also, it is assumed that the∇Tm is pos-
itive; that is, the cold heat exchanger is placed at the
ginning of the plate (near the driver side) and the hot h
exchanger is positioned at the end of the plate. The t
mophysical properties are assumed to be constant an
calculated at the mean temperature(Tm) except the mean
g

e

density (ρm) which is calculated from the mean pressu
(pm). Most of the calculations are performed at the mid
of the plate which equalsλ/16 whereλ is the wavelength
Although non-dimensional forms of the fluctuating veloc
(u1/u1,∞), temperature(T1/T1,∞), and Nusselt number ar
adopted in this section, the properties of Helium at 298
(= Tm) are used if it is necessary, but Helium has a low e
trical conductivity.

6.1. Flow field

Figs. 2(a)–(c) depict the velocity profiles at various tim
during one oscillation. The time is measured in Figs. 2(
(c) from the point in the cycle when the particle undergo
oscillation is at its rightmost position over the plate. Nonz
viscosity results in a no-slip velocity between the bound
and the fluid which, in effect, produces a sheared velo
profile for the tangential velocity component. This shea
profile, as exhibited in Figs. 2(a)–(c), oscillates and its a
plitude, at any given distance from the plate, changes
time. At a large distance from the plate, the fluid moves
if it is frictionless. One interesting feature of these veloc
profiles is that they show a region near the stack in wh
u1 is larger thanu1,∞. Richardson and Tyler [36] reporte
similar behavior (Richardson’s annular effect) of the vel
ity profile in a pipe. The effect can be understood realiz
that the solution of Eq. (12) is, in effect, the superposition
a transverse wave and a uniform oscillation. The transv
wave has, aty = 0, a fluid velocity that is consistently equ
and opposite to that of the uniform oscillation. Fory > 0,
however, the fluid velocity in the transverse wave can exc
its value aty = 0 and combine with the uniform velocity t
produce, at some time during a cycle, a velocity that is la
for some values ofy than the value of the uniform (free
stream) velocity. However, an increasingHaδ reduces the
Richardson effect on the velocity profile (see Figs. 2(a)–
and at a highHaδ (for example,Haδ = 10.0), the Richard-
son effect is absent; that is, the maximum fluid velocity a
particular time equalsu1,∞.

As previously mentioned, the fluid velocity is a superp
sition of u1,∞ (the uniform oscillation is independent ofy)
and u1,y (the transverse wave depends ony), whereu1,y

consists ofu1,∞ times the negative exponential term. D
to the exponential decay, the effects produced by the p
on the velocity profile are not significant far away from t
plate. Theoretically,u1 approachesu1,∞ wheny approaches
∞; however, the magnitude ofu1 is almost equal tou1,∞
within a distance that is slightly more thanδν . The following
equation:

y = �[
ln(1− u1/u1,∞)/

{
(1+ i)

√
1− i Ha2

δ

}]
δν (31)

gives a rough idea of how quicklyu1 approachesu1,∞ with
an increasingδν . For example, whent = 0 andHaδ = 0,
u1 ≈ 0.9u1,∞ at y ≈ 1.15δν and u1 ≈ 0.99u1,∞ at y ≈
2.3δν .
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Fig. 2. The velocity profiles at different times during one cycle forHa= 0.0,
1.0, and 10.0.

Fig. 3. The normalized average fluid velocity at different Hartmann n
bers.

Since the reduction of the Richardson’s effect is one
the consequences of an increasingHaδ , this tendency, along
with some other effects of an increasingHaδ , can be under
stood if the non-dimensional form of the root-mean-squa
velocity is computed as follows:

urms=
√〈

u2
1

〉
/
〈
u2

1,∞
〉

(32)

Fig. 3 displaysurms as a function ofy/δν at six selected
Haδ . It is evident that the magnitude of the fluid velocity e
ceeds the free stream velocity only whenHaδ � 1. Hence,
the Richardson effect does not exist, whenHaδ > 1. An-
other consequence of an increasingHaδ is the boundary
layer thickness reduction. In the limit of an infiniteHaδ , the
boundary layer thickness becomes zero.

A close examination of Eq. (12) is required to understa
the DR’s effect on the velocity profile. Inu1 andu1,∞, the ra-
tio of the fluctuating pressure gradient(∂p1/∂x) to the mean
fluid density(ρm) is related to the DR by the following ex
pression:

∂p1/∂x

ρm

= DR

(
RTm

λ̃M

)
cos

(
x

λ̃

)
(33)

whereM andR are the molecular weight of the fluid and t
universal gas constant, respectively. Therefore, the hi
drive ratio indicates a higher magnitude of the velocity, p
vided that the remaining parameters are constant. As the
appears inu1,∞ , the magnitude ofu1/u1,∞ is unaffected by
the DR’s variation. Fig. 4 displays the variation of the ro
mean-squared skin friction coefficient(Cf,rms), as a function
of Haδ , at different DRs. TheCf,rms− Haδ profiles are sim-
ilar in shape for all the DRs. ForHaδ � 1, the variation in
Cf,rms is independent of theHaδ ’s variation, but forHaδ � 1,
the magnitude ofCf,rms increases with the increases inHaδ .
WhenHaδ � 1, Cf,rms decreases with the increases in
DR at a particularHaδ .



36 S. Mahmud, R.A. Fraser / International Journal of Thermal Sciences 45 (2006) 29–40

rive

)

wall
all,
to

ive

rd-
um
b-
is a
orm
fect
of
les.

s-

ture

nts i
ch

fini-
Fig. 4. The root-mean-squared skin friction coefficient at different d
ratios.

6.2. Thermal filed

For three differentHaδ (= 0.0, 1.0, and 10), Figs. 5(a)–(c
display the non-dimensional temperature(T1/T1,∞) profiles
at various times during one oscillation. The DR and∇Tm are
kept constant. The fluctuating temperature is zero at the
due the imposed boundary condition. Away from the w
the temperature oscillates with time in a similar fashion
that of the velocity oscillation. Due to the vanishing negat
exponential terms with an increasingy in Eq. (22),T1 ap-
proachesT1,∞ at a distance that is equal to a fewδk . Similar
to Richardson’s effect [35] on the velocity profile, Richa
son’s effect on the temperature profile indicates a maxim
value (> T1,∞) in a region adjacent the plate. A close o
servation of Eq. (22) reveals that the temperature profile
superposition of two transverse thermal waves and a unif
oscillation. Therefore, the discussion of Richardson’s ef
on the velocity profiles is applicable for the occurrence
the Richardson’s effect-like case of the temperature profi

Haδ appears inT1 in a very complicated way. An increa
ing Haδ has an insignificant influence onT1, when∇Tm is
comparatively lower in magnitude. TheT1/T1,∞ profiles do
not show any significant variation with an increasingHaδ ,
as depicted in Figs. 5(a)–(c) when∇Tm = 1.0. However,
a considerable variation inT1 is found when∇Tm is high
in magnitude as illustrated in Fig. 6. Here, the tempera
profiles are shown only fort = 0.0. An increasingHaδ has
a tendency to reduce each of the temperature compone
Eq. (22); an increasing∇Tm has a tendency to increase ea
of the temperature components in Eq. (22). With the de
tion of the∇Tcr in Eq. (26), it is possible to expressT1/T1,∞
as

T1

T1,∞
= 1+ Pr

(Pr − 1) − Ψ

1

Γ0 − 1
exp

(
−1+ i

δν

√
1+ Ψ y

)

−
[
Γ0 + 1+ Ψ

(Pr − 1) − Ψ

]
1

Γ0 − 1
exp

(
−1+ i

δk

y

)
(34)
n

(a)

(b)

(c)

Fig. 5. The temperature profiles at different times during one cycle for
Ha= 0.0, 1.0, and 10.0.
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Fig. 6. The temperature profiles at different Hartmann numbers w
t = 0.0 and∇Tm = 100.

whereΓ0 equals∇Tcr/∇Tm. The inverse ofΓ0 is Γ [2]. The
parameter,Γ − 1, is sometimes referred as a temperat
gradient factor [2]. The∇Tcr is a combination of certain
flow and fluid properties, and its variation is independ
of the ∇Tm’s variation. In the limit of small∇Tm (that is,
∇Tm � ∇Tcr), Γ0 → ∞, and Eq. (34) is reduced to the fo
lowing form:

lim
Γ0→∞

(
T1

T1,∞

)
= 1− exp

(
−1+ i

δk

y

)
(35)

which is independent ofHaδ . Therefore, at a low∇Tm, the
dimensionless temperature profiles are unaffected (or
fected very little) byHaδ ’s variation (see Fig. 5). In the limi
of a large∇Tm (that is,∇Tm � ∇Tcr), Γ0 → 0, and Eq. (34)
reduces to the following form:

lim
Γ0→0

(
T1

T1,∞

)
= 1− Pr

(Pr − 1) − Ψ
exp

(
−1+ i

δν

√
1+ Ψ y

)

+ 1+ Ψ

(Pr − 1) − Ψ
exp

(
−1+ i

δk

y

)
(36)

which depends onHaδ . Therefore, at a high∇Tm, the di-
mensionless temperature profiles are affected by theHaδ ’s
variation (see Fig. 6).

In the expressionT1 in Eq. (22), each of the three term
on the right-hand side has ap1 or ∇p1 term. Since the DR
appears indirectly in bothp1 and∇p1, T1/T1,∞ is free from
DR’s influence. Next, the focus is on the influence of∇Tm on
the thermal field. In order to remove the time dependenc
the temperature, the root-mean-squared temperature is
culated to become dimensionless as follows:

Trms=
√〈

T 2
1

〉
/
〈
T 2

1,∞
〉

(37)

Fig. 7 denotes the variation ofTrms as a function ofy/δk

at the different values of∇Tm. Trms is 0 at the wall as ex
pected, regardless of∇Tm’s variation.Trms approaches to it
free stream value(= 1) as expected far away from the wa
As pointed our earlier,∇Tcr plays an important role for th
l-

Fig. 7. The normalized average temperature at different Hartmann num

Fig. 8. The Nusselt number distribution as a function of time in one t
period.

temperature distribution. For the setting of the paramete
Fig. 7, ∇Tcr ≈ 50.8732. When∇Tm < ∇Tcr, the near wall
gradient ofTrms increases with increasing∇Tm. This trend
is reversed when∇Tm > ∇Tcr.

6.3. Heat transfer

Both Eqs. (29) and (30) are complex and time depend
The appearance ofp1 and∇p1 in Eqs. (29) and (30) ren
dersNuτ independent of DR’s variation. For a constantHaδ

and DR, Fig. 8 displays the time variation ofNuτ at differ-
ent ∇Tm’s. One complete period(t = 0 − τ) is selected to
show Nuτ ’s variation.Nuτ exhibits a true periodic distrib
ution with time with a zero time average(〈Nuτ 〉 = 0) over
a complete period.∇Tm plays a critical role forNuτ ’s dis-
tribution. For the setting of the parameters in Fig. 8,∇Tcr

(∇Tcr ≈ 50.8732) is computed from Eq. (26). Except
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Fig. 9. The root-mean-squared Nusselt number as a function of the tem
ature gradient.

t = 0.125τ and 0.625τ , Nuτ shows the opposite sign abo
and below the∇Tcr; that is, at a particular time,Nuτ is pos-
itive when∇Tm > ∇Tcr, and negative when∇Tm < ∇Tcr,
and vice versa. Next, the root-mean-squared Nusselt nu
(Nurms) is calculated as the time average ofNuτ , resulting
in zero, in order to show its variation withHaδ and∇Tm.
Fig. 9 depicts the variation ofNurms as a function of∇Tm

at differentHaδ . Theoretically,∇Tm = ∇Tcr is a singular
point for Nuτ ’s variation. The magnitude ofNurms is high
at a value of∇Tm close to∇Tcr, as observed in Fig. 9. Fo
the selected range of∇Tm,∇Tcr is more significant when
Haδ < 1. When Haδ > 1, Nurms shows a minimal or no
variation with∇Tm’s variation, and its value approximate
equals 1.

7. Wave equation

Till this point, Eq. (14) has been used to expressp1 over
the plate. Eq. (14) works well in the limit of a short-stack a
proximation. However, in more general cases, it is neces
to model and solve a wave equation in order to calculate
pressure fluctuation. The linearized first order continuity
inviscid momentum equations are

iωρ1 + ∂(ρmu1)

∂x
= 0 (38)

and(
iωρm + σB2

y

)
u1 = −∂p1

∂x
(39)

By differentiating Eq. (39), with respect tox, and combining
it with Eq. (38),

ρ1 = − 1

ω2(1+ Ψ )

∂2p1

∂x2
(40)

With the thermodynamic relation,ρ1 = −ρmβT1+(γ /c2)p1,
ρ1 can be eliminated from Eq. (40) to yield
r

∂2p1

∂x2
+

(
ω

√
γ

c

√
1+ Ψ

)2

p1 − ρmβω2(1+ Ψ )T1 = 0

(41)

which is reduced to the following by using Eq. (24):

∂2p1

∂x2
+ (1+ Ψ )

(
1

Tm

∂Tm

∂x

)
∂p1

∂x

+ (1+ Ψ )

[(
ω

√
γ

c

)2

− Tmβ2ω2

Cp

]
p1 = 0 (42)

By using the speed of sound and heat capacity therm
namic relations,c2 = γRTm and Cp = γR/(γ − 1), the
terms inside the square bracket of Eq. (42) are simpli
to become(ω/c)2. Finally, the wave equation for the curre
problem becomes

∂2p1

∂x2
+ (1+ Ψ )

∂ ln(Tm)

∂x

∂p1

∂x
+

(
ω

c

√
1+ Ψ

)2

p1 = 0

(43)

In Eq. (43),Tm depends onx and the sound speed(c) de-
pends implicitly onx through its dependence onTm. For
a given Tm(x), the numerical determination ofp1, from
Eq. (43), presents no problem. However, great care shou
taken to achieve an analytical solution to Eq. (43). Only v
special distributions ofTm(x) are appropriate for the ana
lytic treatment of Eq. (43); for example, a piecewise cons
temperature distribution [1] and a linear temperature dist
ution [16]. The first possible general solution to Eq. (43) c
be obtained by assuming that the coefficients of∂p1/∂x and
p1 in Eq. (43) are constants. Then, the general solutio
Eq. (43) is

p1 = Ã1 exp(ϕ1x) + Ã2 exp(ϕ2x) (44)

where the constants,Ã1 andÃ2, are real or complex expres
sions, andϕ1 andϕ2 are expressed as and

ϕ1 = −1

2
(1+ Ψ )

∂ lnTm

∂x

− 1

2

√{
(1+ Ψ )

∂ lnTm

∂x

}2

−
(

2ω

c

√
1+ Ψ

)2

(45a)

and

ϕ2 = −1

2
(1+ Ψ )

∂ lnTm

∂x

+ 1

2

√{
(1+ Ψ )

∂ lnTm

∂x

}2

−
(

2ω

c

√
1+ Ψ

)2

(45b)

At the starting point of the plate(x = xs), it is appropriate
to apply the standing wave pressureps

1(xs). However, it is
extremely difficult to apply correct boundary condition at t
plate exit (x = xe). None of the thermoacoustic literatu
covers such a boundary condition. In this situation, a m
logical way is to apply the exit boundary condition that
similar to that of the fluctuating feature of a standing wa
that is,ps(xe). Then, the expression ofp1 becomes
1
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p1 =
[

ps
1(xs)e

ϕ2xe − ps
1(xe)e

ϕ2xs

eϕ1xs eϕ2xe − eϕ1xeeϕ2xs

]
exp(ϕ1x)

−
[
ps

1(xs)e
ϕ1xe − ps

1(xe)e
ϕ1xs

eϕ1xs eϕ2xe − eϕ1xeeϕ2xs

]
exp(ϕ2x) (46)

where ps
1(x) = PA sin(x/λ̃), ps

1(xs) = PA sin(xs/λ̃),
ps

1(xe) = PA sin(xe/λ̃).
The applicability of Eq. (46) is restricted by the relatio

given in Eq. (45). To obtain a real result from Eq. (46),
following condition must be satisfied:

∂ lnTm

∂x
= ∇Tm

Tm

� 2ω

c
(47)

which, after further mathematical operations and simplifi
tions, becomes

∇Tm � 4π
Tm

λ
= 2Tm

λ̃
(48)

Next, a linear variation of temperatureTm(x) is assumed a
follows:

Tm(x) = Tc(1+ mx), wherem = Th − Tc

TcL
(49)

In Eq. (49),Th andTc are the hot and the cold heat exchan
ers temperature, respectively, andL is the length of the plate
If it is further assumed that the variation ofc is negligible
with Tm’s variation, the general solution to Eq. (43) is

p1 = Ã1 exp
(
ik0

√
1+ Ψ x

)
(1+ mx)−(1+Ψ )/2

× Hg
{[

1+ Ψ

2
,

1− Ψ

2

]
, [ ], m

2ik0
√

1+ Ψ (1+ mx)

}

+ Ã2 exp
(
ik0

√
1+ Ψ x

)
Hg

{[
1+ Ψ

2

]
, [1+ Ψ ],

− 2ik0
√

1+ Ψ (1+ mx)

m

}
(50)

wherek0 equalsω/c. In Eq. (50),Hg{ } is the generalized
hypergeometric function [37]. Ifc varies with the tempera
ture; that is,c = √

γRTm(x), the coefficient ofp1 is written
as(

ω

c

√
1+ Ψ

)2

= k2
1(1+ Ψ )

1+ mx
, wherek1 = ω

c0
(51)

In Eq. (51),c0 is the velocity of sound atTc. Now, the genera
solution to Eq. (43) becomes

p1 =
[
Ã1J−Ψ

{
2k1

√
(1+ mx)(1+ Ψ )

m2

}

+ Ã2Y−Ψ

{
2k1

√
(1+ mx)(1+ Ψ )

m2

}]

× (1+ mx)−Ψ/2 (52)

whereJ−Ψ { } is the Bessel function of the first kind [37
with the order−Ψ , andY−Ψ { } is the Bessel function of th
second kind [37] with the order−Ψ .
8. Conclusions

The objective of the current research effort is to inc
porate into the existing thermoacoustic theory a modifi
tion that uses a magnetic force as a non-contact contro
mechanism of the thermoacoustic effect. In the limit o
large transverse distance(y → ∞), the fluctuating velocity
and temperature approaches ay−independent free strea
velocity and temperature, respectively. In reality, this la
transverse distance is limited to a fewδν or δk . An increasing
Hartmann number (that is, the increasing magnetic force
duces the boundary layer thickness; in the limit of very la
Hartmann number(Haδ → ∞), the boundary layer thick
ness becomes zero. The Richardson’s effect (velocityu1 is
larger thanu1,∞ in a region near the stack) is observed
the velocity profile only whenHaδ � 1. The variation of the
non-dimensional axial velocity is independent of the dr
ratio’s variation. The fluctuating temperature profile sho
a maximum(> T1,∞) in a region near the plate, simila
to that of the velocity profile (the Richardson’s effect-li
scenario). The critical temperature gradient causes a
free stream temperature for an appropriate combinatio
the fluid and flow properties. When∇Tm is small, an in-
creasing Hartmann number show a very little effect on
dimensionless temperature. However, a considerable
ation of temperature is observed with Hartmann numb
variation, when the mean axial temperature gradient is la
The Nusselt number indicates a periodic distribution w
time, and its sign depends on the critical temperature
dient. For the selected range of the mean axial tempera
gradients, the variation in the Nusselt number is insign
cant with∇Tm’s variation; whenHaδ < 1. A wave equation
is developed from the simplified continuity, momentum, a
energy equations. Lastly, three possible solutions to the w
equation are presented.
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